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ABSTRACT 
 

  The growing popularity of electric vehicles has resulted in 

significant improvements in battery technologies. Battery 

state of charge (SOC) is a vital performance indicator in a 

battery management system, which is crucial because it 

provides information on the remaining usable capacity and 

indicates charge and discharge strategies. As a result of non-

uniformity in tuning and testing settings, measuring SOC 

estimation techniques’ performances is challenging. This 

research study developed and evaluated the Extended 

Kalman filter(EKF) for estimating SOC in a range of situations 

including adding sensor noises and biases to terminal voltages 

and currents as well as altering the initialization for states and 

parameters. Furthermore, for SOC computation, a dual EKF 

was employed to predict the sensor voltage and current bias, 

which was then compared to the state EKF.   
 

1. Introduction  

 
Rechargeable lithium-ion batteries have seen a huge 

increase in demand recently since they are still the best 

option for many applications like electric vehicles (EVs) due 

to their ability to exhibit excellent properties compared to 

other battery-type technologies. However, lithium-ion 

battery is a highly intricate, time-varying non-linear 

electrochemical system that makes estimation of its states 

problematic[1]. Conventional approaches such as the 

coulomb counting method and open circuit voltage methods, 

machine learning-based techniques, and battery model-

based techniques have been proposed in the quest for precise 

and accurate SOC estimation. When setting up an estimation 

problem, it is critical to include physical phenomena that occur 

in practical situations as much as feasible. One such prevalent 

circumstance is the use of inferior sensor readings as inputs 

into estimators[2]. The goal of this research is to create an 

algorithm to estimate SOC, sensor voltage/current bias, and 

to verify its performance under various operating scenarios. 

 

2. Model description and analysis 

 
This research adopts the second-order equivalent 

circuit model as shown in Fig.1 since it is able to 

precisely replicate the dynamic performance of the 

lithium-ion battery. According to Kirchhoff’s law, Fig.1 

can be expressed in the discrete form as shown in  
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Fig. 1 Second-order battery equivalent circuit model  

 

equations (2) and (3) 

𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −
𝐼𝑘∆𝑡

𝐶𝑏
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𝑉𝑗,𝑘+1 = 𝑒
−∆𝑡
𝑅𝑗𝐶𝑗𝑉𝑗,𝑘 + 𝑅𝑗 (1 − 𝑒

−∆𝑡
𝑅𝑗𝐶𝑗) 

 

(2) 

𝑉𝑘 = 𝑉𝑂𝐶(𝑆𝑂𝐶𝑘) − 𝐼𝑘𝑅𝑜 − ∑𝑉𝑗,𝑘
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(3) 

Eq. (1) computes the SOC based on coulomb counting 

where I stand for current, Δt is the sampling time, Cb 

is the capacity, and the subscript k connotes step time. 

The voltage and current biases are added as constant 

offsets in either the input current data or the terminal 

voltage measurement to produce biased data. Vb and Ib 

represent the current and voltage sensor bias, whereas 

Vm and Im are the corresponding inaccurate measured 

signals, respectively. 

𝐼 = 𝐼𝑚 − 𝐼𝑏 𝑤ℎ𝑒𝑟𝑒 𝐼�̇� ≈ 0 (4) 

𝑉 = 𝑉𝑚 − 𝑉𝑏 𝑤ℎ𝑒𝑟𝑒 𝑉�̇� ≈ 0 (5) 

From (6) the discrete-time model of the system with 

sensor bias is obtained with the output being the same 

terminal voltage V however the input signal now 

becomes the measured current Im (current with bias) 

and Ib is the augmented current sensor bias. In the same 

vain the resulting augmented model system with 

voltage sensor bias is also obtained as shown in (8) 

with input current and output which is now the 

measured terminal voltage I and Vm respectively. Vb 

denotes the enhanced voltage sensor bias as a state. 

[
 
 
 
𝑆𝑂𝐶𝑘+1

𝑉1,𝑘+1

𝑉2,𝑘+1

𝐼𝑏𝑘+1 ]
 
 
 

=

[
 
 
 
 
 
 1 0 0

𝑇

𝐶𝑏𝑎𝑡

0 𝑒
(

−𝑇
𝑅1𝐶1

)
0 −𝑅1(1 − 𝑒

(
−𝑇

𝑅1𝐶1
)
)

0 0 𝑒
(

−𝑇
𝑅2𝐶2

)
−𝑅2(1 − 𝑒

(
−𝑇

𝑅1𝐶1
)
)

0 0 0 1 ]
 
 
 
 
 
 

[
 
 
 
𝑆𝑂𝐶𝑘

𝑉𝐶1,𝑘

𝑉𝐶2,𝑘

𝐼𝑏𝑘 ]
 
 
 

+

[
 
 
 
 
 
 (

−𝑇

𝐶𝑏𝑎𝑡

)

𝑅1 (1 − 𝑒
(

𝑇
𝐶1𝑅1

)
)

𝑅2 (1 − 𝑒
(

𝑇
𝐶2𝑅2

)
)

0 ]
 
 
 
 
 
 

𝐼𝑚 

 

(6) 

 

𝑉 = 𝑉𝑂𝐶(𝑠𝑜𝑐)  − 𝑉1,𝑘 − 𝑉2,𝑘  − 𝑅𝑜𝐼𝑚 (7)  
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𝑉𝑚 = 𝑉𝑂𝐶(𝑠𝑜𝑐)  − 𝑉1,𝑘 − 𝑉2,𝑘  − 𝑅𝑠𝐼 + 𝑉𝑏 (9)  

 

 

3. Algorithm implementation 

 
In this research both EKF and the DEKF are implemented 

since the battery is a nonlinear system to predict the terminal 

voltage and current bias as well as the SOC, utilizing an 

enhanced state space model. For a non-linear system the 

EKF algorithm can be derived as follows; 
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑑𝑘 
𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑠𝑘  

(10) 

Where, 𝑓(𝑥𝑘 , 𝑢𝑘) and 𝑔(𝑥𝑘 , 𝑢𝑘) are nonlinear state transition 

and measurement functions, respectively. The nonlinear 

functions are linearized at every time step by Taylor’s first-

order series expansion. The DEKF algorithm is as follows; 
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘) + 𝑑𝑘  𝑎𝑛𝑑 𝜃𝑘+1 = 𝜃𝑘 + 𝑟𝑘 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘) + 𝑠𝑘  𝑎𝑛𝑑 ℎ𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘 , 𝜃𝑘) + 𝑒𝑘 
(11) 

Where wk, vk, rk, and ek are independent zero mean Gaussian 

noise processes. To evaluate estimate methods under 

varying sensor qualities, noise and bias are supplied to both 

current and terminal voltage data. The bias level is set at 

20mV for voltage and 12.5mA for current. Parameters used 

for simulation 

Ro = 0.001Ω, R1 =0.013Ω, R2 =0.0013Ω C1 =2.0kF and C2 = 

3.5kF. 

  
(a) (b) 

  
  

(c) (d) 
Fig. 2 Voltage bias scenario estimations (a) EKF-SOC; (b) 

EKF-voltage (c) DEKF-SOC (d) DEKF-voltage 

 

  
 

Fig.3 (a) EKF-SOC (b) DEKF-SOC with input current bias 

respectively 

 

4. Simulation Results 

 
 

Matlab is used to simulate the EKF and DEKF 

algorithms in this study. The SOC prediction 

performance for both algorithms is compared in the 

presence of sensor bias as shown in fig 2 and 3. In the 

presence of voltage bias, DEKF performs better in 

calculating SOC. Results demonstrate that the 

utilization of DEKF results in an approximate 

enhancement of about 1.64% in estimating SOC when 

evaluating the root mean square values. However, both 

algorithms show identical performance under a 

constant current bias. 

 

 

5. Conclusion 

 
This work presented a SOC estimation algorithm (EKF 

and DEKF) considering the addition of sensor bias and 

noise using a second-order ECM. The simulation 

results show DEKF performs quite better performance 

compared to EKF in SOC estimation. Based on sensor 

bias situations, it can be concluded that sensor bias 

modeling, filter type, and tuning are critical for the 

performance of SOC estimation. 
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